Autocovariances of Vector Processes
Vector Autocovariance
Given an \(\smash{n}\) -dimensional, weakly stationary vector
process, \(\smash{\boldsymbol{Y}_{t}}\), the \(\smash{j}\) th
autocovariance matix is defined as:
\[\smash{\Gamma_{j,t} =
E[(\boldsymbol{Y}_{t}-\boldsymbol{\mu})(\boldsymbol{Y}_{t-j} -
\boldsymbol{\mu})^{'}]}.\]
Since \(\smash{Y_{1,t}}\) is different from
\(\smash{Y_{2,t}}\), \(\smash{\Gamma_{j} \neq \Gamma_{-j}}\):
\[\smash{\Gamma_{j}(1,2) = Cov(Y_{1,t},Y_{2,t-j}) \neq
Cov(Y_{1,t},Y_{2,t+j}) = \Gamma_{-j}(1,2).}\]
Vector Autocovariance
It is true that \(\smash{\Gamma_{j} = \Gamma_{-j}^{'}}\):
\[\smash{\Gamma_{j}(1,2) = Cov(Y_{1,t},Y_{2,t-j}) =
Cov(Y_{2,t},Y_{1,t+j}) = \Gamma_{-j}(2,1).}\]
- Stationarity does impose \(\smash{Cov(Y_{1,t},Y_{2,t-j}) =
Cov(Y_{1,t+j},Y_{2,t})}\).
Vector MA(q) Process
A vector moving average process of order \(\smash{q}\) is
\[\boldsymbol{Y}_{t} = \boldsymbol{\mu} + \boldsymbol{\varepsilon}_{t} +
\Theta_{1}\boldsymbol{\varepsilon}_{t-1} +
\Theta_{2}\boldsymbol{\varepsilon}_{t-2} + \ldots +
\Theta_{q}\boldsymbol{\varepsilon}_{t-q}, \,\,\,
\boldsymbol{\varepsilon}_{t}\overset{i.i.d}{\sim}
WN(\boldsymbol{0},\Omega),\]
where \(\smash{\Theta_{j}}\) is an \(\smash{N \times N}\)
matrix of \(\smash{MA}\) coefficients for \(\smash{j =
1,\ldots,q}\).
- We can define \(\smash{\Theta_{0} = I_{n}}\).
- Clearly \(\smash{E[\boldsymbol{Y}_{t}] = \boldsymbol{\mu}
\,\,\, \forall \, t}\).
Vector MA(q) Autocovariances
The jth autocovariance matrix is:
\[\begin{split}\begin{align}
\Gamma_{j} & =
E[(\boldsymbol{Y}_{t}-\boldsymbol{\mu})(\boldsymbol{Y}_{t-j} -
\boldsymbol{\mu})^{'}] \\
& = E[(\Theta_{0}\boldsymbol{\varepsilon}_{t} +
\Theta_{1}\boldsymbol{\varepsilon}_{t-1} + \ldots +
\Theta_{q}\boldsymbol{\varepsilon}_{t-q}) \\
& \hspace{1.5in} \times (\Theta_{0}\boldsymbol{\varepsilon}_{t-j} +
\Theta_{1}\boldsymbol{\varepsilon}_{t-j-1} + \ldots +
\Theta_{q}\boldsymbol{\varepsilon}_{t-j-q})^{'}]
\end{align}\end{split}\]
Vector MA(q) Autocovariances
- For \(\smash{|j| > q: \Gamma_{j} = \boldsymbol{0}_{N \times N}}\).
\[\begin{split}\begin{align}
\Gamma_{0} & = \Theta_{0}\Omega \Theta_{0}^{'} + \Theta_{1} \Omega
\Theta_{1}^{'} + \ldots + \Theta_{q} \Omega \Theta_{q}^{'} \\
& = \sum_{i=0}^{q} \Theta_{i} \Omega \Theta_{i}^{'}.
\end{align}\end{split}\]
- For \(\smash{j = 1,\ldots,q}\):
\[\begin{split}\begin{align}
\Gamma_{j} & = \Theta_{j}\Omega \Theta_{0}^{'} + \Theta_{j+1}
\Omega \Theta_{1}^{'} + \ldots + \Theta_{q} \Omega \Theta_{q-j}^{'}
\\
& = \sum_{i=0}^{q-j} \Theta_{j+i}\Omega \Theta_{i}^{'}.
\end{align}\end{split}\]
Vector MA(q) Autocovariances
- For \(\smash{j = -1,\ldots, -q}\):
\[\begin{split}\begin{align}
\Gamma_{j} & = \Theta_{0}\Omega \Theta_{-j}^{'} + \Theta_{1} \Omega
\Theta_{-j+1}^{'} + \ldots + \Theta_{q+j} \Omega \Theta_{q}^{'} \\
& = \sum_{i=0}^{q+j} \Theta_{i}\Omega \Theta_{-j+i}^{'}.
\end{align}\end{split}\]
- \(\smash{\Gamma_{j}^{'} = \Gamma_{-j}}\).
- Because 1st and 2nd moments of \(\smash{\boldsymbol{Y}_{t}}\)
are independent of time, the vector \(\smash{MA(q)}\) process is
weakly stationary.
Vector \(\smash{MA(\infty)}\) Autocovariances
The vector \(\smash{MA(\infty)}\) is the limit of the vector
\(\smash{MA(q)}\):
\[\smash{\boldsymbol{Y}_{t} = \boldsymbol{\mu} +
\boldsymbol{\varepsilon}_{t} + \Theta_{1}\boldsymbol{\varepsilon}_{t-1} +
\Theta_{2}\boldsymbol{\varepsilon}_{t-2} + \ldots}\]
- The sequence of matrices
\(\smash{\{\Theta_{s}\}_{s=0}^{\infty}}\) is absolutely summable
if each component sequence is absolutely summable.
Vector \(\smash{MA(\infty)}\) Autocovariances
If \(\smash{\{\Theta_{s}\}_{s=0}^{\infty}}\) is absolutely
summable:
- \(\smash{E[\boldsymbol{Y}_{t}] = \boldsymbol{\mu}}\).
- \(\smash{\Gamma_{j} = \sum_{i=0}^{\infty}
\Theta_{j+i}\Omega \Theta_{i}^{'}, \,\,\,\, j = 0,1,2,...}\)
- \(\smash{\boldsymbol{Y}_{t}}\) is ergodic for 1st and 2nd
moments.
- \(\smash{\boldsymbol{Y}_{t}}\) is stationary.
Vector \(\smash{VAR(p)}\) Autocovariances
When a stationary \(\smash{VAR(p)}\) is expressed as a vector
\(\smash{MA(\infty)}\), it satisfies the absolute summability
condition.
- \(\smash{\Theta_{s} = F^{s}= T\Lambda^{s} T^{-1}}\).
- The component-wise sum of absolute values over \(\smash{s =
0,1,2,...}\) will be a weighted average of absolute values of
eigenvalues raised to powers.
- Because of stationarity, \(\smash{|\lambda_{i}| < 1, i =
1,...,np}\), which means \(\smash{\{F^{s}\}_{s=0}^{\infty}}\) is
absolutely summable.
Vector \(\smash{VAR(p)}\) Autocovariances
Recall that a \(\smash{VAR(p)}\) can be expressed as:
\[\smash{\boldsymbol{\xi}_{t} = F\boldsymbol{\xi}_{t-1} +
\boldsymbol{v}_{t}}\]
In this case
\[\begin{split}\smash{\Sigma = E[\boldsymbol{\xi}_{t}\boldsymbol{\xi}_{t}^{'}] =
\left[\begin{array}{cccc} \Gamma_{0} & \Gamma_{1} & \ldots &
\Gamma_{p-1} \\ \Gamma_{1}^{'} & \Gamma_{0} & \ldots & \Gamma_{p-2}
\\ \vdots & \vdots & \ddots & \vdots \\\Gamma_{p-1}^{'} &
\Gamma_{p-2}^{'} & \ldots & \Gamma_{0} \\ \end{array} \right]}.\end{split}\]
\[\,\,\]
Vector \(\smash{VAR(p)}\) Autocovariances
By the definition of \(\smash{\boldsymbol{\xi}_{t}}\),
\[\begin{split}\begin{align}
\Sigma & = E[\boldsymbol{\xi}_{t}\boldsymbol{\xi}_{t}^{'}] \\
& = E\left[(F\boldsymbol{\xi}_{t-1} +
\boldsymbol{v}_{t})(F\boldsymbol{\xi}_{t-1} +
\boldsymbol{v}_{t})^{'}\right] \\
& = F\underset{\Sigma}{\underbrace{E[\boldsymbol{\xi}_{t-1}
\boldsymbol{\xi}_{t-1}^{'}]}}F^{'} +
\underset{Q}{\underbrace{E[\boldsymbol{v}_{t}\boldsymbol{v}_{t}^{'}]}}
\\
& = F\Sigma F^{'} + Q.
\end{align}\end{split}\]
Using the Vec Operator
In general
\[\smash{Vec(ABC) = C^{'}\bigotimes A \cdot Vec(B)}.\]
Thus,
\[\begin{split}\begin{gather}
Vec(\Sigma) = F \bigotimes F\cdot Vec(\Sigma) + Vec(Q) \\
\implies Vec(\Sigma) = [I - F\bigotimes F]^{-1} \cdot Vec(Q).
\end{gather}\end{split}\]
- \(\smash{F \bigotimes F}\) is an \(\smash{(np)^{2} \times
(np)^{2}}\) matrix.
- Because all eigenvalues of \(\smash{F}\) lie inside the unit
circle, so do all eigenvalues of \(\smash{F\bigotimes F}\),
which means \(\smash{F\bigotimes F}\) is invertible.
Vector \(\smash{VAR(p)}\) Autocovariances
\[\begin{split}\begin{align}
\Sigma_{j} & = E[\boldsymbol{\xi}_{t}\boldsymbol{\xi}_{t-j}^{'}] \\
& = FE[\boldsymbol{\xi}_{t-1}\boldsymbol{\xi}_{t-j}^{'}] \\
& = F\Sigma_{j-1}, j= 1,2,3,... \\
\implies \Sigma_{j} & = F^{j}\Sigma.
\end{align}\end{split}\]