Structural Vector Autoregression

Definition

A \(\smash{p}\) th order structural vector autoregression generalizes has the form:

\[\smash{B_0\boldsymbol{Y}_{t} = \boldsymbol{k} + B_{1}\boldsymbol{Y}_{t-1} + B_{2}\boldsymbol{Y}_{t-2} + \ldots + + B_{p}\boldsymbol{Y}_{t-p} + \boldsymbol{u}_{t}}.\]
  • \(\smash{Y_{t} = (Y_{1t},Y_{2t},\ldots,Y_{nt})^{'}}\) is an \(\smash{n \times 1}\) vector of random variables.
  • \(\smash{\boldsymbol{k} = (k_1,k_2,\ldots,k_n)^{'}}\) is an \(\smash{n \times 1}\) vector of constants.
  • \(\smash{B_{j}}\) is an \(\smash{n \times n}\) matrix of autoregressive coefficients for \(\smash{j = 0,\ldots,p}\).
  • \(\smash{\boldsymbol{u}_{t} = (u_{1t},\ldots, u_{nt})^{'} }\) is a vector white noise process:
\[\begin{split}\smash{E[\boldsymbol{u}_{t}] = \boldsymbol{0} \,\,\, \text{and} \,\,\, E[\boldsymbol{u}_{t}\boldsymbol{u}^{'}_{\tau}] = \bigg\{\begin{array}{c} U \hspace{10pt} t = \tau \\ 0 \hspace{10pt} \text{o/w} \\ \end{array}}.\end{split}\]
  • \(\smash{\boldsymbol{Y}_{t}}\) is referred to as a \(\smash{SVAR(p)}\).

Structural Models

\(\smash{SVAR}\) s

  • Allow for contemporaneous relationships among the variables in \(\smash{Y_{t}}\).

    • Not only are the elements of \(\smash{Y_{it}}\) related to \(\smash{Y_{1\tau},Y_{2\tau},\ldots,Y_{n\tau}}\) for \(\smash{\tau = t-1, \ldots,t-p}\), but they are also related to \(\smash{Y_{1t},Y_{2t},\ldots,Y_{nt}}\).
  • Such relationships allow for the expression of theoretical (structural) economic model relationships.

Example

Consider the following bivariate model for asset returns, \(\smash{r_t}\), and order flow, \(\smash{x_t}\):

\[\begin{split}\begin{align*} r_t & = \alpha_{x0} x_t + \alpha_{r1} r_{t-1} + \alpha_{x1} x_{t-1} + \varepsilon_{rt} \\ x_t & = \beta_{r1} r_{t-1} + \beta_{x1} x_{t-1} + \varepsilon_{xt}. \end{align*}\end{split}\]
  • \(\smash{r_t}\) is typically measured as the differences in log prices.
  • \(\smash{x_t}\) is signed trade volume: total number of shares traded at the offer (demand), less the total number of shares traded on the bid (supply).
  • Notice that \(\smash{r_t}\) depends on \(\smash{x_t}\) and lags of both variables, whereas \(\smash{x_t}\) only depends on lags.

Example

The model can be expressed as

\[\begin{split}\begin{align} \left[\begin{array}{cc} 1 & -\alpha_{x0} \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} r_t \\ x_t \end{array} \right] & = \left[\begin{array}{cc} \alpha_{r1} & \alpha_{x1} \\ \beta_{r1} & \beta_{x1} \end{array} \right] \left[\begin{array}{c} r_{t-1} \\ x_{t-1} \end{array} \right] + \left[\begin{array}{c} \varepsilon_{rt} \\ \varepsilon_{xt} \end{array} \right]. \end{align}\end{split}\]

\(\smash{SVAR}\) as \(\smash{VAR}\)

Under the assumption that \(\smash{B_0}\) is invertible, a \(\smash{SVAR}\) can be expressed as a traditional \(\smash{VAR}\):

\[\begin{split}\begin{align} \boldsymbol{Y}_{t} & = B_0^{-1} \boldsymbol{k} + B_0^{-1} B_{1}\boldsymbol{Y}_{t-1} + B_0^{-1} B_{2}\boldsymbol{Y}_{t-2} + \ldots + B_0^{-1} B_{p}\boldsymbol{Y}_{t-p} + B_0^{-1} \boldsymbol{u}_{t} \\ & = \boldsymbol{c} + \Phi_{1}\boldsymbol{Y}_{t-1} + \Phi_{2}\boldsymbol{Y}_{t-2} + \ldots + \Phi_{p}\boldsymbol{Y}_{t-p} + \boldsymbol{\varepsilon}_{t}. \end{align}\end{split}\]
  • This is the reduced form representation of the \(\smash{SVAR}\).

\(\smash{VAR}\) as \(\smash{SVAR}\)

Recall that a \(\smash{VAR(p)}\) can be expressed in terms of orthoganalized errors via its \(\smash{VMA(\infty)}\) representation:

\[\begin{split}\begin{align*} \boldsymbol{Y}_{t} & = \boldsymbol{\mu} + H^{-1}H\boldsymbol{\varepsilon}_{t} + \Psi_{1}(H^{-1}H)\boldsymbol{\varepsilon}_{t-1} + \ldots \\ & = \boldsymbol{\mu} + J_{0}\boldsymbol{u}_{t} + J_{1}\boldsymbol{u}_{t-1} + J_{2}\boldsymbol{u}_{t-2} + \ldots \end{align*}\end{split}\]
  • \(\smash{H}\) is the matrix such that \(\smash{\,\,\,\,H \Omega H^{'} = D}\), where \(\smash{\text{E}[\varepsilon_t \varepsilon_t^{\prime}] = \Omega}\).

Consider the system

\[\smash{H \boldsymbol{Y}_{t} = H \boldsymbol{c} + H \Phi_{1}\boldsymbol{Y}_{t-1} + H \Phi_{2}\boldsymbol{Y}_{t-2} + \ldots + H \Phi_{p}\boldsymbol{Y}_{t-p} + H \boldsymbol{\varepsilon}_{t}}.\]
  • This is a \(\smash{SVAR}\) with \(\smash{B_0 = H}\). \(\smash{B_i = H \Phi_i}\) and orthogonal errors \(\smash{\boldsymbol{u}_t = H \boldsymbol{\varepsilon}_t}\).

Identification

A \(\smash{SVAR}\) is identified if the number of parameters in \(\smash{B_0}\) and \(\smash{D}\) are equal to those of \(\smash{\Omega}\).

  • Since \(\smash{D}\) is diagonal (\(\smash{n}\) parameters), \(\smash{B_0}\) can have at most \(\smash{n(n-1)/2}\) parameters.
  • For example, this condition is satisfied if \(\smash{B_0}\) is lower triangular (with ones on the diagonal).