Vector Autoregression

Definition

A \(\smash{p}\) th order vector autoregression generalizes a scalar \(\smash{AR(p)}\):

\[\smash{\boldsymbol{Y}_{t} = \boldsymbol{c} + \Phi_{1}\boldsymbol{Y}_{t-1} + \Phi_{2}\boldsymbol{Y}_{t-2} + \ldots + + \Phi_{p}\boldsymbol{Y}_{t-p} + \boldsymbol{\varepsilon}_{t}}.\]
  • \(\smash{Y_{t} = (Y_{1t},Y_{2t},\ldots,Y_{nt})^{'}}\) is an \(\smash{n \times 1}\) vector of random variables.
  • \(\smash{\boldsymbol{c} = (c_1,c_2,\ldots,c_n)^{'}}\) is an \(\smash{n \times 1}\) vector of constants.
  • \(\smash{\Phi_{j}}\) is an \(\smash{n \times n}\) matrix of autoregressive coefficients for \(\smash{j = 1,\ldots,p}\).
  • \(\smash{\boldsymbol{\varepsilon}_{t} = (\varepsilon_{1t},\ldots, \varepsilon_{nt})^{'} }\) is a vector white noise process:
\[\begin{split}\smash{E[\boldsymbol{\varepsilon}_{t}] = \boldsymbol{0} \,\,\, \text{and} \,\,\, E[\boldsymbol{\varepsilon}_{t}\boldsymbol{\varepsilon}^{'}_{\tau}] = \bigg\{\begin{array}{c} \Omega \hspace{10pt} t = \tau \\ 0 \hspace{10pt} \text{o/w} \\ \end{array}}.\end{split}\]
  • \(\smash{\boldsymbol{Y}_{t}}\) is referred to as a \(\smash{VAR(p)}\).

\(\smash{AR(p)}\) as \(\smash{VAR(1)}\)

Recall, an \(\smash{AR(p)}\) can be written as a \(\smash{VAR(1)}\)

\[\smash{\boldsymbol{Y}_{t} = \Phi \boldsymbol{Y}_{t-1} + \boldsymbol{v}_{t}}\]

where

\[\begin{split}\smash{\boldsymbol{Y}_{t} = \left[\begin{array}{c} Y_{t} \\ \vdots \\ Y_{t-p+1} \\ \end{array} \right], \hspace{10pt} \Phi = \left[\begin{array}{ccccc} \phi_{1} & \phi_{2} & \ldots & \phi_{p-1} & \phi_{p} \\ 1 & 0 & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & 0 \\ \end{array} \right], \hspace{10pt} \boldsymbol{v}_{t} = \left[\begin{array}{c} \varepsilon_{t} \\ 0 \\ 0 \\ \vdots \\ 0 \\ \end{array} \right]}\end{split}\]
\[\,\,\]

Lag Operator Notation

In lag operator notation,

\[\begin{split}\begin{align*} \Phi(L) \boldsymbol{Y}_{t} & = \left[I_{n} - \Phi_{1}L - \Phi_{2}L^{2} - \ldots - \Phi_{p}L^{p}\right]\boldsymbol{Y}_{t} \\ & = \boldsymbol{c} + \boldsymbol{\varepsilon}_{t}. \end{align*}\end{split}\]
  • \(\smash{\Phi(L)}\) is a matrix where each component is a scalar lag polynomial.

Weak Stationarity

The concept of weak stationarity is unchanged: \(\smash{\boldsymbol{Y}_{t}}\) is weakly stationary if

\[\smash{E[\boldsymbol{Y}_{t}] \,\,\, \text{and} \,\,\, E[\boldsymbol{Y}_{t}\boldsymbol{Y}_{t-j}^{'}]}\]

are independent of \(\smash{t \,\, \forall \,\, j}\)

Mean

By weak stationarity,

\[\begin{split}\begin{align*} E[\boldsymbol{Y}_{t}] & = \boldsymbol{\mu} = \boldsymbol{c} + \Phi_{1}\boldsymbol{\mu} + \ldots + \Phi_{p}\boldsymbol{\mu} \\ \implies \boldsymbol{\mu} & = [I_{n} - \Phi_{1} - \ldots - \Phi_{p}]^{-1}\boldsymbol{c} \end{align*}\end{split}\]

Note that

\[\smash{\boldsymbol{\mu} = (\mu_{1},\mu_{2},\ldots,\mu_{n})^{'} \neq (\mu,\mu,\ldots,\mu)^{'}}\]

Alternatively, we can re-express as a zero-mean process:

\[\smash{(\boldsymbol{Y}_{t} - \boldsymbol{\mu}) = \Phi_{1}(\boldsymbol{Y}_{t-1} - \boldsymbol{\mu}) + \ldots + \Phi_{p}(\boldsymbol{Y}_{t-p} - \boldsymbol{\mu}) + \boldsymbol{\varepsilon}_{t}}.\]

\(\smash{VAR(p)}\) as \(\smash{VAR(1)}\)

We can write a \(\smash{VAR(p)}\) as a \(\smash{VAR(1)}\):

\[\smash{\boldsymbol{\xi}_{t} = F\boldsymbol{\xi}_{t-1} + \boldsymbol{v}_{t}}\]

where

\[\begin{split}\smash{\boldsymbol{\xi}_{t} = \left[\begin{array}{c} \boldsymbol{Y}_{t} - \boldsymbol{\mu} \\ \boldsymbol{Y}_{t-1} - \boldsymbol{\mu} \\ \vdots \\ \boldsymbol{Y}_{t-p+1} - \boldsymbol{\mu} \\ \end{array} \right], \,\,\, F = \left[\begin{array}{ccccc} \Phi_{1} & \Phi_{2} &\ldots& \Phi_{p-1} & \Phi_{p} \\ I_{n} & 0 & 0 & \ldots & 0 \\ 0 & I_{n} &\ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & I_{n} & 0 \\ \end{array}\right], \,\,\, \boldsymbol{v}_{t} = \left[\begin{array}{c} \boldsymbol{\varepsilon}_{t} \\ 0 \\ 0 \\ \vdots \\ 0 \\ \end{array} \right]}.\end{split}\]
\[\,\,\]

\(\smash{VAR(p)}\) as \(\smash{VAR(1)}\)

Clearly,

\[\begin{split}\smash{E[\boldsymbol{v}_{t}\boldsymbol{v}_{\tau}^{'}] = \bigg\{\begin{array}{c} Q \hspace{10pt} t = \tau \\ 0 \hspace{10pt} \text{o/w} \\ \end{array}}\end{split}\]

where

\[\begin{split}\smash{Q = \left[\begin{array}{cccc} \Omega & 0& \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 \\ \end{array} \right]_{np \times np}}.\end{split}\]
\[\,\,\]

Recursive Iteration

Recursively iterating on the \(\smash{VAR(1)}\):

\[\smash{\boldsymbol{\xi}_{t+s} = \boldsymbol{v}_{t+s} + F\boldsymbol{v}_{t+s-1} + F^{2}\boldsymbol{v}_{t+s-2} + \ldots + F^{s-1}\boldsymbol{v}_{t+1} + F^{s}\xi_{t}}.\]

Assuming \(\smash{F}\) is nonsingular, it can be decomposed as

\[\smash{F = T \Lambda T^{-1}}.\]
  • \(\smash{\Lambda}\) is a diagonal matrix comprised of the \(\smash{np}\) eigenvalues of \(\smash{F}\).
  • \(\smash{T}\) is a matrix of eigenvectors as columns.

Recursive Iteration

Substituting the decomposition,

\[\begin{split}\begin{gather*} F^2 = FF = (T \Lambda T^{-1})\,T \Lambda T^{-1} = T \Lambda^{2} T^{-1} \\ \implies F^{s} = T \Lambda^{s} T^{-1} \rightarrow 0 \,\,\,\, \text{if} \,\,\,\, |\lambda_{k}| < 1 \,\,\,\, \text{for} \,\,\,\, k = 1, \ldots, np. \end{gather*}\end{split}\]

If \(\smash{F^{s}\rightarrow 0}\) as \(\smash{s\rightarrow \infty}\),

  • The effect of \(\smash{\boldsymbol{\varepsilon}_{t}}\) on \(\smash{\boldsymbol{\xi}_{t+s}}\) dies out as \(\smash{s\rightarrow \infty}\).
  • \(\smash{\boldsymbol{\xi}_{t}}\) (and hence \(\smash{\boldsymbol{Y}_{t}}\)) is stationary and causal.
  • Alternatively, \(\smash{\boldsymbol{Y}_{t}}\) is stationary and causal if the roots of \(\smash{[I_{n} - \Phi_{1}z - \Phi_{2}z^{2} - \ldots - \Phi_{p}z^{p}]}\) all lie outside the unit circle.

Vector \(\smash{MA(\infty)}\) Representation

If \(\smash{F^{s}\rightarrow 0}\) as \(\smash{s\rightarrow \infty}\), then

\[\smash{\boldsymbol{\xi}_{t+s} = \boldsymbol{v}_{t+s} + F\boldsymbol{v}_{t+s-1} + F^{2}\boldsymbol{v}_{t+s-2} + F^{3}\boldsymbol{v}_{t+s-3} + \ldots}\]

which is a vector \(\smash{MA(\infty)}\) process.

Vector \(\smash{MA(\infty)}\) Representation

We can also write \(\smash{\boldsymbol{Y}_{t}}\) alone as a vector \(\smash{MA(\infty)}\). First, recognize

\[\begin{split}\begin{align*} \boldsymbol{Y}_{t+s} & = \boldsymbol{\mu} + \boldsymbol{\varepsilon}_{t+s} + \Psi_{1} \boldsymbol{\varepsilon}_{t+s-1} + \Psi_{2} \boldsymbol{\varepsilon}_{t+s-2} + \ldots + \Psi_{s-1} \boldsymbol{\varepsilon}_{t+1} \\ & \hspace{0.5in} + F_{11}^{(s)}(\boldsymbol{Y}_{t} - \boldsymbol{\mu}) + F_{12}^{(s)}(\boldsymbol{Y}_{t-1} - \boldsymbol{\mu}) + \ldots + F_{1p}^{(s)}(\boldsymbol{Y}_{t-p+1} - \boldsymbol{\mu}). \end{align*}\end{split}\]
  • \(\smash{\Psi_{j} = F_{11}^{(j)}}\).
  • \(\smash{F_{1k}^{(j)}}\) is comprised of rows 1 to \(\smash{n}\) and columns \(\smash{(k-1)n+1}\) to \(\smash{kn}\) of matrix \(\smash{F^{j}}\).
  • Note that the matrices \(\smash{(F \times F)[1:n,1:n]}\) and \(\smash{F[1:n,1:n] \times F[1:n,1:n]}\) are not the same.

Vector \(\smash{MA(\infty)}\) Representation

Suppose all eigenvalues of \(\smash{F}\) are inside the unit circle.

  • Then \(\smash{F^{s}\rightarrow 0}\) as \(\smash{s\rightarrow \infty}\).
  • This means \(\smash{F_{1k}^{(s)}\rightarrow 0}\) as \(\smash{s\rightarrow \infty}\).
  • In the limit
\[\begin{split}\begin{align*} \boldsymbol{Y}_{t+s} & = \boldsymbol{\mu} + \boldsymbol{\varepsilon}_{t+s} + \Psi_{1} \boldsymbol{\varepsilon}_{t+s-1} + \Psi_{2} \boldsymbol{\varepsilon}_{t+s-2} + \ldots \\ & = \boldsymbol{\mu} + \Psi(L)\boldsymbol{\varepsilon}_{t+s}. \end{align*}\end{split}\]

Inverse of \(\smash{MA(\infty)}\) Lag Polynomial

In this case \(\smash{\Psi(L) = \Phi(L)^{-1}}\) or

\[\smash{[1 - \Phi_{1}L - \Phi_{2}L^{2} - \ldots - \Phi_{p}L^{p}][1 + \Psi_{1}L + \Psi_{2}L^{2} + \ldots] = I_{n}}.\]

Representation with Uncorrelated Noise

We can always write a stationary and causal \(\smash{VAR(p)}\) as a vector \(\smash{MA(\infty)}\) with a mutually uncorrelated white noise vector.

  • Define \(\smash{\boldsymbol{u}_{t} = H\boldsymbol{\varepsilon}_{t}\,\,\,\,}\) such that \(\smash{\,\,\,\,H \Omega H^{'} = D}\).
  • Then
\[\begin{split}\begin{align*} \boldsymbol{Y}_{t} & = \boldsymbol{\mu} + H^{-1}H\boldsymbol{\varepsilon}_{t} + \Psi_{1}(H^{-1}H)\boldsymbol{\varepsilon}_{t-1} + \ldots \\ & = \boldsymbol{\mu} + J_{0}\boldsymbol{u}_{t} + J_{1}\boldsymbol{u}_{t-1} + J_{2}\boldsymbol{u}_{t-2} + \ldots \end{align*}\end{split}\]

where \(\smash{J_{s} = \Psi_{s}H^{-1}}\).

Representation with Uncorrelated Noise

  • In this case the leading matrix \(\smash{J_{0} \neq I_{n}}\).
  • The noise vector is uncorrelated:
\[\begin{split}\begin{align*} E[\boldsymbol{u}_{t}\boldsymbol{u}_{t}^{'}] & = E[H\boldsymbol{\varepsilon}_{t} \boldsymbol{\varepsilon}_{t}^{'} H^{'}] \\ & = H E[\boldsymbol{\varepsilon}_{t}\boldsymbol{\varepsilon}_{t}] H^{'} \\ & = H \Omega H^{'} \\ & = D. \end{align*}\end{split}\]