GMM Over-Identifying Restrictions

Criterion Function Limiting Distribution

Since

\[\begin{split}\begin{gather} \sqrt{T}\boldsymbol{g}_{T}(\boldsymbol{\theta}_{0}) \stackrel{d}{\longrightarrow} N(0,S) \\ \implies (\sqrt{T} \boldsymbol{g}_{T}( \boldsymbol{\theta}_{0})^{'})S^{-1}(\sqrt{T}\boldsymbol{g}_{T} (\boldsymbol{\theta}_{0})) = T \boldsymbol{g}_{T}(\boldsymbol{\theta}_{0})^{'}S^{-1} \boldsymbol{g}_{T}(\boldsymbol{\theta}_{0}) \overset{d}{\longrightarrow} \chi^{2}(r) \end{gather}\end{split}\]

where \(\smash{r > k}\) is the number of moment conditions.

Estimated Criterion Function

It turns out that

\[\smash{T \boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}})^{'}\hat{S}^{-1} \boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}}) \overset{d}{\not\to} \chi^{2}(r)}.\]
  • This is because \(\smash{k}\) moment conditions will be set to zero exactly.

Exact Identification

Consider \(\smash{r=k}\). In this case

\[\begin{split}\begin{gather} \boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}}) = 0 \\ T \boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}})^{'}\hat{S}^{-1} \boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}}) = 0. \end{gather}\end{split}\]
  • \(\smash{r-k}\) of the moment conditions will be non-zero.

Over Identification

In general,

\[\smash{J_{T}(\hat{\boldsymbol{\theta}}) = T \boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}})^{'}\hat{S}^{-1} \boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}}) \overset{d}{\longrightarrow} \chi^{2}(r-k)}.\]
  • To test if our moment conditions are close to zero, we compute \(\smash{J_{T}(\hat{\boldsymbol{\theta}})}\) and compare with a \(\smash{\chi^{2}(r-k)}\) distribution.
  • If \(\smash{J_{T}(\hat{\boldsymbol{\theta}})}\) is far in the tail of the \(\smash{\chi^{2}(r-k)}\) distribution, we might conclude that the model is misspecified.

Asset Pricing with GMM

Suppose an agent derives utility from consumption, \(\smash{c_{t}}\), and seeks to maximze the discounted sum of expected utility:

\[\smash{ \sum_{\tau = 0}^{\infty} \beta^{\tau}E[u(c_{t+\tau})|\Omega_{t}]},\]

where \(\smash{u(c_{t})}\) is the period utility function and satisfies:

\[\smash{ \frac{\partial u(c_{t})}{\partial c_{t}} > 0 \,\,\, \text{and} \,\,\, \frac{\partial^{2} u(c_{t})}{\partial c_{t}^{2}} < 0}.\]

Equilibrium Conditions

Suppose that the agent can purchase \(\smash{m}\) assets paying gross returns \(\smash{(1 + r_{i,t+1})}\) between periods \(\smash{t}\) and \(\smash{t+1}\), for \(\smash{i = 1,\ldots, m}\).

  • The agent’s portfolio must satisfy
\[\smash{u^{'}(c_{t}) = \beta E[(1+r_{i,t+1})u^{'}(c_{t+1}) | \Omega_{t}] \,\,\, \text{for} \,\,\, i=1,\ldots,m}.\]

Equilibrium Conditions

The equilibrium conditions say that marginal utility of consuming an extra unit today should be equivalent to the expected marginal consumption gained by purchasing a unit of any asset.

  • If these conditions didn’t hold, the agent wouldn’t be at an optimum.

The portfolio conditions can be rewritten as:

\[\smash{E\left[\left(\beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}(1+r_{i,t+1}) -1\right)\bigg|\Omega_{t}\right] = 0 \,\,\, \text{for} i=1,\ldots,m}.\]

Equilibrium Conditions

Given a vector \(\smash{\boldsymbol{x}_{t} \in \Omega_{t}}\), by the law of iterated expectations

\[\begin{split}\begin{align} E\left[\underset{\boldsymbol{h}(\boldsymbol{\theta}, \boldsymbol{y}_{t})}{\underbrace{\left(\beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}(1+r_{i,t+1}) -1\right)\boldsymbol{x}_{t}}} \right] & = E\left[E\left[\left(\beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}(1+r_{i,t+1}) -1\right)\boldsymbol{x}_{t} \bigg|\Omega_{t}\right]\right] \\ & E\left[\underset{0}{\underbrace{E\left[\left(\beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}(1+r_{i,t+1}) -1\right) \bigg|\Omega_{t}\right]}} \boldsymbol{x}_{t} \right] = 0, \end{align}\end{split}\]

for \(\smash{i=1,\ldots,m}\).

Stochastic Discount Factor

Economic theory says that all returns discounted by \(\smash{\beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}}\) should be identical:

\[\begin{split}\begin{gather} E\left[\underset{m_{t,t+1}}{\underbrace{\beta \frac{u^{'}(c_{t+1})}{u^{'} (c_{t})}(1+r_{i,t+1})}}\right] = 1 \\ \implies E[m_{t,t+1}(1+r_{i,t+1})] = 1. \end{gather}\end{split}\]
  • \(\smash{\beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}(1+r_{i,t+1}) - 1}\) is a forecast error and should be uncorrelated with any variable \(\smash{\boldsymbol{x}_{t} \in \Omega_{t}}\)

Casting as GMM

This problem maps easily into GMM where

\[\begin{split}\begin{gather} \boldsymbol{y}_{t} = (r_{1,+1},\ldots,r_{m,t+1},c_{t},c_{t+1}, \boldsymbol{x}_{t}^{'})^{'} \\ \boldsymbol{h}(\boldsymbol{\theta},\boldsymbol{y}_{t}) = \left[\begin{array}{c} \left(1 - \beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}(1+r_{i,t+1})\right)\boldsymbol{x}_{t} \\ \vdots \\ \left(1 - \beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}(1+r_{m,t+1})\right)\boldsymbol{x}_{t} \\ \end{array} \right] \\ \boldsymbol{g}_{T}(\boldsymbol{\theta}) = \frac{1}{T} \sum_{t=0}^{T} \boldsymbol{h}(\boldsymbol{\theta},\boldsymbol{y}_{t}). \end{gather}\end{split}\]

Weighting Matrix for Asset Problem

Since the forecast errors in \(\smash{\boldsymbol{h}(\boldsymbol{\theta},\boldsymbol{y}_{t})}\) are unpredictable, they exhibit no serial correlation.

  • Thus, \(\smash{\boldsymbol{h}(\boldsymbol{\theta}, \boldsymbol{y}_{t})}\) exhibits no serial correlation.

This means \(\smash{S}\) can be simply be estimated by

\[\smash{\hat{S}_{T} = \frac{1}{T} \sum_{t=0}^{T} \boldsymbol{h}(\hat{\boldsymbol{\theta}}, \boldsymbol{y}_{t}) \boldsymbol{h}(\hat{\boldsymbol{\theta}},\boldsymbol{y}_{t})^{'}}.\]

Hansen and Singleton (1982)

Hansen and Singleton (1982) used GMM to estimate parameters of a model where

\[\begin{split}\smash{u(c_{t}) = \begin{cases} \frac{c_{t}^{1-\gamma}}{1-\gamma} & \text{for} \,\,\, \gamma > 0 \,\,\, \text{and} \,\,\, \gamma \neq 1 \\ log(c_{t}) & \text{for} \,\,\, \gamma = 1 \\ \end{cases}.}\end{split}\]
  • In this case, \(\smash{\boldsymbol{\theta} = (\beta,\gamma)^{'}}\).
  • Since forecast errors are uncorrelated with past returns and consumption, the lagged values of asset returns and aggregate consumption in \(\smash{\boldsymbol{x}_{t}}\).