============================================================================== GMM Over-Identifying Restrictions ============================================================================== Criterion Function Limiting Distribution ============================================================================== Since .. math:: \begin{gather} \sqrt{T}\boldsymbol{g}_{T}(\boldsymbol{\theta}_{0}) \stackrel{d}{\longrightarrow} N(0,S) \\ \implies (\sqrt{T} \boldsymbol{g}_{T}( \boldsymbol{\theta}_{0})^{'})S^{-1}(\sqrt{T}\boldsymbol{g}_{T} (\boldsymbol{\theta}_{0})) = T \boldsymbol{g}_{T}(\boldsymbol{\theta}_{0})^{'}S^{-1} \boldsymbol{g}_{T}(\boldsymbol{\theta}_{0}) \overset{d}{\longrightarrow} \chi^{2}(r) \end{gather} where :math:`\smash{r > k}` is the number of moment conditions. Estimated Criterion Function ============================================================================== It turns out that .. math:: \smash{T \boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}})^{'}\hat{S}^{-1} \boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}}) \overset{d}{\not\to} \chi^{2}(r)}. .. raw:: - This is because :math:`\smash{k}` moment conditions will be set to zero exactly. Exact Identification ============================================================================== Consider :math:`\smash{r=k}`. In this case .. math:: \begin{gather} \boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}}) = 0 \\ T \boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}})^{'}\hat{S}^{-1} \boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}}) = 0. \end{gather} .. raw:: - :math:`\smash{r-k}` of the moment conditions will be non-zero. Over Identification ============================================================================== In general, .. math:: \smash{J_{T}(\hat{\boldsymbol{\theta}}) = T \boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}})^{'}\hat{S}^{-1} \boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}}) \overset{d}{\longrightarrow} \chi^{2}(r-k)}. .. raw:: - To test if our moment conditions are close to zero, we compute :math:`\smash{J_{T}(\hat{\boldsymbol{\theta}})}` and compare with a :math:`\smash{\chi^{2}(r-k)}` distribution. .. raw:: - If :math:`\smash{J_{T}(\hat{\boldsymbol{\theta}})}` is far in the tail of the :math:`\smash{\chi^{2}(r-k)}` distribution, we might conclude that the model is misspecified. Asset Pricing with GMM ============================================================================== Suppose an agent derives utility from consumption, :math:`\smash{c_{t}}`, and seeks to maximze the discounted sum of expected utility: .. math:: \smash{ \sum_{\tau = 0}^{\infty} \beta^{\tau}E[u(c_{t+\tau})|\Omega_{t}]}, where :math:`\smash{u(c_{t})}` is the period utility function and satisfies: .. math:: \smash{ \frac{\partial u(c_{t})}{\partial c_{t}} > 0 \,\,\, \text{and} \,\,\, \frac{\partial^{2} u(c_{t})}{\partial c_{t}^{2}} < 0}. Equilibrium Conditions ============================================================================== Suppose that the agent can purchase :math:`\smash{m}` assets paying gross returns :math:`\smash{(1 + r_{i,t+1})}` between periods :math:`\smash{t}` and :math:`\smash{t+1}`, for :math:`\smash{i = 1,\ldots, m}`. .. raw:: - The agent's portfolio must satisfy .. math:: \smash{u^{'}(c_{t}) = \beta E[(1+r_{i,t+1})u^{'}(c_{t+1}) | \Omega_{t}] \,\,\, \text{for} \,\,\, i=1,\ldots,m}. Equilibrium Conditions ============================================================================== The equilibrium conditions say that marginal utility of consuming an extra unit today should be equivalent to the expected marginal consumption gained by purchasing a unit of any asset. .. raw:: - If these conditions didn't hold, the agent wouldn't be at an optimum. .. raw:: The portfolio conditions can be rewritten as: .. math:: \smash{E\left[\left(\beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}(1+r_{i,t+1}) -1\right)\bigg|\Omega_{t}\right] = 0 \,\,\, \text{for} i=1,\ldots,m}. Equilibrium Conditions ============================================================================== Given a vector :math:`\smash{\boldsymbol{x}_{t} \in \Omega_{t}}`, by the law of iterated expectations .. math:: \begin{align} E\left[\underset{\boldsymbol{h}(\boldsymbol{\theta}, \boldsymbol{y}_{t})}{\underbrace{\left(\beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}(1+r_{i,t+1}) -1\right)\boldsymbol{x}_{t}}} \right] & = E\left[E\left[\left(\beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}(1+r_{i,t+1}) -1\right)\boldsymbol{x}_{t} \bigg|\Omega_{t}\right]\right] \\ & E\left[\underset{0}{\underbrace{E\left[\left(\beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}(1+r_{i,t+1}) -1\right) \bigg|\Omega_{t}\right]}} \boldsymbol{x}_{t} \right] = 0, \end{align} for :math:`\smash{i=1,\ldots,m}`. Stochastic Discount Factor ============================================================================== Economic theory says that all returns discounted by :math:`\smash{\beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}}` should be identical: .. math:: \begin{gather} E\left[\underset{m_{t,t+1}}{\underbrace{\beta \frac{u^{'}(c_{t+1})}{u^{'} (c_{t})}(1+r_{i,t+1})}}\right] = 1 \\ \implies E[m_{t,t+1}(1+r_{i,t+1})] = 1. \end{gather} .. raw:: - :math:`\smash{\beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}(1+r_{i,t+1}) - 1}` is a forecast error and should be uncorrelated with any variable :math:`\smash{\boldsymbol{x}_{t} \in \Omega_{t}}` Casting as GMM ============================================================================== This problem maps easily into GMM where .. math:: \begin{gather} \boldsymbol{y}_{t} = (r_{1,+1},\ldots,r_{m,t+1},c_{t},c_{t+1}, \boldsymbol{x}_{t}^{'})^{'} \\ \boldsymbol{h}(\boldsymbol{\theta},\boldsymbol{y}_{t}) = \left[\begin{array}{c} \left(1 - \beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}(1+r_{i,t+1})\right)\boldsymbol{x}_{t} \\ \vdots \\ \left(1 - \beta \frac{u^{'}(c_{t+1})}{u^{'}(c_{t})}(1+r_{m,t+1})\right)\boldsymbol{x}_{t} \\ \end{array} \right] \\ \boldsymbol{g}_{T}(\boldsymbol{\theta}) = \frac{1}{T} \sum_{t=0}^{T} \boldsymbol{h}(\boldsymbol{\theta},\boldsymbol{y}_{t}). \end{gather} Weighting Matrix for Asset Problem ============================================================================== Since the forecast errors in :math:`\smash{\boldsymbol{h}(\boldsymbol{\theta},\boldsymbol{y}_{t})}` are unpredictable, they exhibit no serial correlation. .. raw:: - Thus, :math:`\smash{\boldsymbol{h}(\boldsymbol{\theta}, \boldsymbol{y}_{t})}` exhibits no serial correlation. .. raw:: This means :math:`\smash{S}` can be simply be estimated by .. math:: \smash{\hat{S}_{T} = \frac{1}{T} \sum_{t=0}^{T} \boldsymbol{h}(\hat{\boldsymbol{\theta}}, \boldsymbol{y}_{t}) \boldsymbol{h}(\hat{\boldsymbol{\theta}},\boldsymbol{y}_{t})^{'}}. Hansen and Singleton (1982) ============================================================================== Hansen and Singleton (1982) used GMM to estimate parameters of a model where .. math:: \smash{u(c_{t}) = \begin{cases} \frac{c_{t}^{1-\gamma}}{1-\gamma} & \text{for} \,\,\, \gamma > 0 \,\,\, \text{and} \,\,\, \gamma \neq 1 \\ log(c_{t}) & \text{for} \,\,\, \gamma = 1 \\ \end{cases}.} .. raw:: - In this case, :math:`\smash{\boldsymbol{\theta} = (\beta,\gamma)^{'}}`. .. raw:: - Since forecast errors are uncorrelated with past returns and consumption, the lagged values of asset returns and aggregate consumption in :math:`\smash{\boldsymbol{x}_{t}}`.