Method of Moments

Method of Moments

Suppose \(\smash{\{y_{t}\}_{t=1}^{T}}\) is an i.i.d. sample of random variable \(\smash{Y}\) from density \(\smash{f_{Y}(y|\boldsymbol{\theta})}\).

  • \(\smash{\boldsymbol{\theta}}\) is a \(\smash{(k \times 1)}\) dimensional vector of parameters.

Suppose \(\smash{k}\) population moments can be written as functions of \(\smash{\boldsymbol{\theta}}\):

\[\smash{E[Y_{t}^{i}] = \mu_{i}(\boldsymbol{\theta}), \,\,\, i = i_{1}, i_{2}, \ldots , i_{k}.}\]

Method of Moments

The method of moments estimator, \(\smash{\hat{\boldsymbol{\theta}}_{mm}}\), of \(\smash{\boldsymbol{\theta}}\) is the value:

\[\smash{\mu_{i}(\hat{\theta}_{mm}) = \frac{1}{T} \sum_{t=1}^{T} y_{t}^{i}, \,\,\, i = i_{1}, i_{2},\ldots,i_{k}}.\]
  • Note that if you need to estimate \(\smash{k}\) parameters, you must specify exactly \(\smash{k}\) moments.

Example: Normal

  • \(\smash{\boldsymbol{\theta} = (\mu,\sigma^{2})'}\)
  • \(\smash{k = 2}\)
  • \(\smash{E[Y^{1}] = \mu}\)
  • \(\smash{E[Y^{2}] = Var(Y) + E[Y]^{2} = \sigma^{2} + \mu^2}\).

Example: Beta Distribution

Suppose \(\smash{Y\sim \text{Beta}(\alpha,\beta)}\):

\[\smash{f_{Y}(y|\alpha,\beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}y^{\alpha-1}(1-y)^{\beta-1}}.\]

In this case, \(\smash{\boldsymbol{\theta} = (\alpha,\beta)'}\) and:

\[\begin{split}\begin{align} \mu_{1} & = E[Y^{1}] = \frac{\alpha}{\alpha + \beta} \\ \sigma^{2} & = Var(Y) = \frac{\alpha \beta}{(\alpha + \beta)^{2}(\alpha + \beta + 1)} \\ \end{align}\end{split}\]

Example: Beta Distribution

\[\begin{split}\begin{align} \implies \mu_{2} & = E[Y^{2}] \\ & = Var(Y) + E[Y^{1}]^{2} \\ & = \frac{\alpha \beta}{(\alpha + \beta)^{2}(\alpha + \beta + 1)} + \frac{\alpha^{2}}{(\alpha + \beta)^{2}} \\ & = \frac{\alpha \beta + \alpha^{2}(\alpha + \beta +1)}{(\alpha + \beta)^{2}(\alpha + \beta + 1)}. \end{align}\end{split}\]

Example: Beta Distribution

Solve for \(\smash{\beta}\) using \(\smash{\mu_{1}}\):

\[\begin{split}\begin{gather} \alpha = \mu_{1}(\alpha + \beta) \\ \implies \alpha = \mu_{1}\alpha + \mu_{1}\beta \\ \implies \alpha(1-\mu_{1}) = \mu_{1}\beta \\ \implies \beta = \frac{\alpha(1-\mu_{1})}{\mu_{1}}. \end{gather}\end{split}\]

Example: Beta Distribution

From the relationship \(\smash{\alpha = \mu_{1}(\alpha + \beta)}\) we have:

\[\begin{split}\begin{gather} (\alpha + \beta) = \frac{\alpha}{\mu_{1}} \\ (\alpha + \beta +1) = \frac{\alpha}{\mu_{1}} + 1 = \frac{\alpha + \mu_{1}}{\mu_{1}}. \end{gather}\end{split}\]

Example: Beta Distribution

Now substitute for \(\smash{\beta}\), \(\smash{(\alpha+\beta)}\) and \(\smash{(\alpha+\beta+1)}\) in \(\smash{\mu_{2}}\):

\[\begin{split}\begin{align} \mu_{2} & = \frac{\alpha^{2}\left( \frac{1-\mu_{1}}{\mu_{1}}\right) + \alpha^{2}\left( \frac{\alpha +\mu_{1}}{\mu_{1}}\right)}{ \frac{\alpha^{2}}{\mu^2_{1}}\cdot \frac{\alpha + \mu_{1}}{\mu_{1}}} \\ & = \frac{1 - \mu_{1} + \alpha + \mu_{1}}{ \frac{\alpha + \mu_{1}}{\mu_{1}^{2}}} \\ & = \frac{(1+\alpha)\mu_{1}^{2}}{\alpha + \mu_{1}}. \end{align}\end{split}\]

Example: Beta Distribution

\[\begin{split}\begin{align} \implies \alpha \mu_{2} + \mu_{1}\mu_{2} & = \mu_{1}^{2}+\alpha \mu_{1}^{2} \\ \implies \alpha(\mu_{2}-\mu_{1}^{2}) & = \mu_{1}^{2} - \mu_{1}\mu_{2} \\ \implies \alpha = \frac{\mu_{1}^{2} - \mu_{1}\mu_{2}}{\underset{\sigma^{2}}{\underbrace{\mu_{2}-\mu_{1}^{2}}}} & = \frac{\mu_{1}^{2} - \mu_{1}\mu_{2} + \mu_{1}^{3} - \mu_{1}^{3}}{\sigma^{2}} \\ & = \frac{\mu_{1}^{2}(1-\mu_{1}) - \mu_{1}\overset{\sigma^{2}}{\overbrace{(\mu_{2}-\mu_{1}^{2})}}}{\sigma^{2}} \\ & = \frac{\mu_{1}^{2}(1-\mu_{1})}{\sigma^{2}}-\mu_{1}. \end{align}\end{split}\]

Example: Beta Distribution

Thus,

\[\smash{\beta = \frac{\alpha(1-\mu_{1})}{\mu_{1}} = \frac{\mu_{1}(1-\mu_{1})^{2}}{\sigma^{2}} - (1-\mu_{1})}.\]

The result is,

\[\begin{split}\begin{align} \hat{\alpha}_{mm} & = \frac{\hat{\mu}_{1}^{2}(1-\hat{\mu}_{1})}{\hat{\sigma^{2}}} - \hat{\mu}_{1} \\ \hat{\beta}_{mm} & = \frac{\hat{\mu}_{1}(1-\hat{\mu}_{1})^{2}}{\hat{\sigma^{2}}} - (1-\hat{\mu}_{1}). \end{align}\end{split}\]

Example: Beta Distribution

Where,

\[\begin{split}\begin{align} \hat{\mu}_{1} & = \frac{1}{T} \sum_{t=1}^{T} y_{t} \\ \hat{\mu}_{2} & = \frac{1}{T} \sum_{t=1}^{T} y_{t}^{2} \\ \hat{\sigma}^{2} & = \hat{\mu}_{2} - \hat{\mu}_{1}^{2}. \end{align}\end{split}\]

Example: t distribution

Suppose \(\smash{Y\sim t(\nu)}\):

\[\smash{f_{Y}(y|\nu) = \frac{\Gamma \left( \frac{\nu + 1}{2}\right)}{(\pi \nu)^{1/2}\Gamma \left( \frac{\nu}{2}\right)} \left(1 + \frac{y^{2}}{\nu}\right)^{-\frac{\nu +1}{2}}}.\]

In this case \(\smash{\boldsymbol{\theta} = \nu}\).

Example: t distribution

If \(\smash{\nu > 2}\),

\[\begin{split}\begin{align} \mu_{2} & = \frac{\nu}{\nu -2} \\ \implies \nu & = \nu \mu_{2} - 2\mu_{2} \\ \implies \nu & = \frac{2 \mu_{2}}{\mu_{2} - 1} \\ \implies \hat{\nu}_{mm} & = \frac{2 \hat{\mu}_{2}}{\hat{\mu}_{2} -1}, \end{align}\end{split}\]

where

\[\smash{\hat{\mu}_{2} = \frac{1}{T} \sum_{t=1}^{T} y_{t}^{2}}.\]