Method of Moments
Method of Moments
Suppose \(\smash{\{y_{t}\}_{t=1}^{T}}\) is an i.i.d. sample of
random variable \(\smash{Y}\) from density
\(\smash{f_{Y}(y|\boldsymbol{\theta})}\).
- \(\smash{\boldsymbol{\theta}}\) is a \(\smash{(k \times
1)}\) dimensional vector of parameters.
Suppose \(\smash{k}\) population moments can be written as
functions of \(\smash{\boldsymbol{\theta}}\):
\[\smash{E[Y_{t}^{i}] = \mu_{i}(\boldsymbol{\theta}), \,\,\, i =
i_{1}, i_{2}, \ldots , i_{k}.}\]
Method of Moments
The method of moments estimator,
\(\smash{\hat{\boldsymbol{\theta}}_{mm}}\), of
\(\smash{\boldsymbol{\theta}}\) is the value:
\[\smash{\mu_{i}(\hat{\theta}_{mm}) = \frac{1}{T}
\sum_{t=1}^{T} y_{t}^{i}, \,\,\, i = i_{1}, i_{2},\ldots,i_{k}}.\]
- Note that if you need to estimate \(\smash{k}\) parameters, you
must specify exactly \(\smash{k}\) moments.
Example: Normal
- \(\smash{\boldsymbol{\theta} = (\mu,\sigma^{2})'}\)
- \(\smash{E[Y^{1}] = \mu}\)
- \(\smash{E[Y^{2}] = Var(Y) + E[Y]^{2} = \sigma^{2} + \mu^2}\).
Example: Beta Distribution
Suppose \(\smash{Y\sim \text{Beta}(\alpha,\beta)}\):
\[\smash{f_{Y}(y|\alpha,\beta) = \frac{\Gamma(\alpha +
\beta)}{\Gamma(\alpha)\Gamma(\beta)}y^{\alpha-1}(1-y)^{\beta-1}}.\]
In this case, \(\smash{\boldsymbol{\theta} = (\alpha,\beta)'}\)
and:
\[\begin{split}\begin{align}
\mu_{1} & = E[Y^{1}] = \frac{\alpha}{\alpha + \beta} \\
\sigma^{2} & = Var(Y) = \frac{\alpha \beta}{(\alpha +
\beta)^{2}(\alpha + \beta + 1)} \\
\end{align}\end{split}\]
Example: Beta Distribution
\[\begin{split}\begin{align}
\implies \mu_{2} & = E[Y^{2}] \\
& = Var(Y) + E[Y^{1}]^{2} \\
& = \frac{\alpha \beta}{(\alpha + \beta)^{2}(\alpha + \beta + 1)} +
\frac{\alpha^{2}}{(\alpha + \beta)^{2}} \\
& = \frac{\alpha \beta + \alpha^{2}(\alpha + \beta +1)}{(\alpha +
\beta)^{2}(\alpha + \beta + 1)}.
\end{align}\end{split}\]
Example: Beta Distribution
Solve for \(\smash{\beta}\) using \(\smash{\mu_{1}}\):
\[\begin{split}\begin{gather}
\alpha = \mu_{1}(\alpha + \beta) \\
\implies \alpha = \mu_{1}\alpha + \mu_{1}\beta \\
\implies \alpha(1-\mu_{1}) = \mu_{1}\beta \\
\implies \beta = \frac{\alpha(1-\mu_{1})}{\mu_{1}}.
\end{gather}\end{split}\]
Example: Beta Distribution
From the relationship \(\smash{\alpha = \mu_{1}(\alpha + \beta)}\)
we have:
\[\begin{split}\begin{gather}
(\alpha + \beta) = \frac{\alpha}{\mu_{1}} \\
(\alpha + \beta +1) = \frac{\alpha}{\mu_{1}} + 1 =
\frac{\alpha + \mu_{1}}{\mu_{1}}.
\end{gather}\end{split}\]
Example: Beta Distribution
Now substitute for \(\smash{\beta}\),
\(\smash{(\alpha+\beta)}\) and \(\smash{(\alpha+\beta+1)}\) in
\(\smash{\mu_{2}}\):
\[\begin{split}\begin{align}
\mu_{2} & = \frac{\alpha^{2}\left(
\frac{1-\mu_{1}}{\mu_{1}}\right) + \alpha^{2}\left( \frac{\alpha
+\mu_{1}}{\mu_{1}}\right)}{ \frac{\alpha^{2}}{\mu^2_{1}}\cdot
\frac{\alpha + \mu_{1}}{\mu_{1}}} \\
& = \frac{1 - \mu_{1} + \alpha + \mu_{1}}{ \frac{\alpha +
\mu_{1}}{\mu_{1}^{2}}} \\
& = \frac{(1+\alpha)\mu_{1}^{2}}{\alpha + \mu_{1}}.
\end{align}\end{split}\]
Example: Beta Distribution
\[\begin{split}\begin{align}
\implies \alpha \mu_{2} + \mu_{1}\mu_{2} & = \mu_{1}^{2}+\alpha
\mu_{1}^{2} \\
\implies \alpha(\mu_{2}-\mu_{1}^{2}) & = \mu_{1}^{2} -
\mu_{1}\mu_{2} \\
\implies \alpha = \frac{\mu_{1}^{2} -
\mu_{1}\mu_{2}}{\underset{\sigma^{2}}{\underbrace{\mu_{2}-\mu_{1}^{2}}}}
& = \frac{\mu_{1}^{2} - \mu_{1}\mu_{2} + \mu_{1}^{3} -
\mu_{1}^{3}}{\sigma^{2}} \\
& = \frac{\mu_{1}^{2}(1-\mu_{1}) -
\mu_{1}\overset{\sigma^{2}}{\overbrace{(\mu_{2}-\mu_{1}^{2})}}}{\sigma^{2}}
\\
& = \frac{\mu_{1}^{2}(1-\mu_{1})}{\sigma^{2}}-\mu_{1}.
\end{align}\end{split}\]
Example: Beta Distribution
Thus,
\[\smash{\beta = \frac{\alpha(1-\mu_{1})}{\mu_{1}} =
\frac{\mu_{1}(1-\mu_{1})^{2}}{\sigma^{2}} - (1-\mu_{1})}.\]
The result is,
\[\begin{split}\begin{align}
\hat{\alpha}_{mm} & =
\frac{\hat{\mu}_{1}^{2}(1-\hat{\mu}_{1})}{\hat{\sigma^{2}}} -
\hat{\mu}_{1} \\
\hat{\beta}_{mm} & =
\frac{\hat{\mu}_{1}(1-\hat{\mu}_{1})^{2}}{\hat{\sigma^{2}}} -
(1-\hat{\mu}_{1}).
\end{align}\end{split}\]
Example: Beta Distribution
Where,
\[\begin{split}\begin{align}
\hat{\mu}_{1} & = \frac{1}{T} \sum_{t=1}^{T} y_{t} \\
\hat{\mu}_{2} & = \frac{1}{T} \sum_{t=1}^{T} y_{t}^{2} \\
\hat{\sigma}^{2} & = \hat{\mu}_{2} - \hat{\mu}_{1}^{2}.
\end{align}\end{split}\]
Example: t distribution
Suppose \(\smash{Y\sim t(\nu)}\):
\[\smash{f_{Y}(y|\nu) = \frac{\Gamma \left( \frac{\nu +
1}{2}\right)}{(\pi \nu)^{1/2}\Gamma \left( \frac{\nu}{2}\right)}
\left(1 + \frac{y^{2}}{\nu}\right)^{-\frac{\nu +1}{2}}}.\]
In this case \(\smash{\boldsymbol{\theta} = \nu}\).
Example: t distribution
If \(\smash{\nu > 2}\),
\[\begin{split}\begin{align}
\mu_{2} & = \frac{\nu}{\nu -2} \\
\implies \nu & = \nu \mu_{2} - 2\mu_{2} \\
\implies \nu & = \frac{2 \mu_{2}}{\mu_{2} - 1} \\
\implies \hat{\nu}_{mm} & = \frac{2 \hat{\mu}_{2}}{\hat{\mu}_{2}
-1},
\end{align}\end{split}\]
where
\[\smash{\hat{\mu}_{2} = \frac{1}{T} \sum_{t=1}^{T} y_{t}^{2}}.\]