ARMA Processes¶
\(\smash{ARMA(p,q)}\) Process¶
Given white noise \(\smash{\{\varepsilon_t\}}\), consider the process
\[\smash{Y_t = c + \phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p} + \varepsilon_t +
\theta_1 \varepsilon_{t-1} + \ldots \theta_q \varepsilon_{t-q},}\]
where \(\smash{c}\), \(\smash{\{\phi_i\}_{i=1}^p}\) and \(\smash{\{\theta_i\}_{i=1}^q}\) are constants.
- This is an \(\smash{ARMA(p,q)}\) process.
\(\smash{ARMA(p,q)}\) Process¶
We can rewrite in terms of lag operators:
\[\begin{align}
\phi(L) Y_t & = c + \theta(L) \varepsilon_t,
\end{align}\]
where
\[\begin{split}\begin{align}
\phi(L) & = 1-\phi_1 L - \phi_2 L^2 - \ldots - \phi_p L^p \\
\theta(L) & = 1+\theta_1 L + \theta_2 L^2 + \ldots + \theta_q
L^q.
\end{align}\end{split}\]
\(\smash{ARMA(p,q)}\) as \(\smash{MA(\infty)}\)¶
Recall
- \(\smash{\phi(L) = (1-\lambda_1 L)(1-\lambda_2 L) \cdots (1-\lambda_pL).}\)
- If the roots, \(\smash{\frac{1}{|\lambda_i|} > 1}\), \(\smash{\forall i}\) then \(\smash{|\lambda_i| < 1}\), \(\smash{\forall i}\) and
\[\begin{split}\begin{align*}
\phi(L)^{-1} & = (1-\lambda_1 L)^{-1}(1-\lambda_2
L)^{-1} \cdots (1-\lambda_pL)^{-1} \\
& = \left(\sum_{j=0}^{\infty} \lambda_1^j
L^j\right) \left(\sum_{j=0}^{\infty} \lambda_2^j L^j\right)
\cdots \left(\sum_{j=0}^{\infty} \lambda_p^j L^j\right).
\end{align*}\end{split}\]
\(\smash{ARMA(p,q)}\) as \(\smash{MA(\infty)}\)¶
Thus, if the roots of \(\smash{\phi(L)}\) all lie outside the unit circle,
\[\begin{align*}
Y_t & = \mu + \psi(L) \varepsilon_t,
\end{align*}\]
where \(\smash{\mu = \phi(L)^{-1} c}\) and \(\smash{\psi(L) = \phi(L)^{-1} \theta(L)}\).
- This restriction on the roots of \(\smash{\phi(L)}\) results in
\[\smash{\sum_{i=1}^{\infty} |\psi_i| < \infty.}\]
- Hence, \(\smash{Y_t}\) is an \(\smash{MA(\infty)}\) process and is weakly stationary.
- The stationarity of an \(\smash{ARMA(p,q)}\) depends only on \(\smash{\{\phi_i\}_{i=1}^p}\) and not on \(\smash{\{\theta_i\}_{i=1}^q}\).
Expectation of \(\smash{ARMA(p,q)}\)¶
Assume \(\smash{Y_t}\) is weakly stationary: the roots of \(\smash{\phi(L)}\) lie outside the unit circle.
\[\begin{split}\begin{align*}
\text{E}[Y_t] & = c + \phi_1 \text{E}[Y_{t-1}] + \ldots + \phi_p
\text{E}[Y_{t-p}] \\
& \hspace{0.75in} + \text{E}[\varepsilon_t] + \theta_1 \text{E}[\varepsilon_{t-1}] + \ldots
+ \theta_q \text{E}[\varepsilon_{t-q}]\\
& = c + \phi_1 \text{E}[Y_t] + \ldots + \phi_p \text{E}[Y_t] \\
\Rightarrow \text{E}[Y_t] & = \frac{c}{1-\phi_1 -
\ldots - \phi_p} = \mu.
\end{align*}\end{split}\]
- This is the same mean as an \(\smash{AR(p)}\) process with parameters \(\smash{c}\) and \(\smash{\{\phi_i\}_{i=1}^p}\).
Autocovariances of \(\smash{ARMA(p,q)}\)¶
Given that \(\smash{\mu = c/(1-\phi_1 - \ldots - \phi_p)}\) for weakly stationary \(\smash{Y_t}\):
\[ \begin{align}\begin{aligned}\begin{split}\begin{align*}
Y_t & = \mu(1-\phi_1 - \ldots - \phi_p) + \phi_1
Y_{t-1} + \ldots + \phi_p Y_{t-p} \\
& \hspace{2in} + \varepsilon_t + \theta_1 \varepsilon_1 + \ldots \theta_q
\varepsilon_{t-q} \\
\Rightarrow & (Y_t - \mu) = \phi_1(Y_{t-1} - \mu) +
\ldots + \phi_p(Y_{t-p} - \mu) \\
& \hspace{2in} + \varepsilon_t + \theta_1 \varepsilon_1 + \ldots \theta_q
\varepsilon_{t-q}.
\end{align*}\end{split}\\\begin{split}\begin{align*}
\gamma_j & = \text{E}\left[(Y_t - \mu) (Y_{t-j} -
\mu)\right] \\
& = \phi_1 \text{E}\left[(Y_{t-1} - \mu) (Y_{t-j} -
\mu)\right] + \ldots \\
& \hspace{0.5in} + \phi_p \text{E}\left[(Y_{t-p} - \mu) (Y_{t-j} -
\mu)\right] \\
& \hspace{1in} + \text{E}\left[\varepsilon_t (Y_{t-j} - \mu)\right] +
\theta_1 \text{E}\left[\varepsilon_{t-1} (Y_{t-j} - \mu)\right] \\
& \hspace{2.25in} + \ldots +
\theta_q \text{E}\left[\varepsilon_{t-q} (Y_{t-j} - \mu)\right]
\end{align*}\end{split}\end{aligned}\end{align} \]
Autocovariances of \(\smash{ARMA(p,q)}\)¶
- For \(\smash{j > q}\), \(\smash{\gamma_j}\) will follow the same law of motion as for an \(\smash{AR(p)}\) process:
\[\begin{align*}
\gamma_j & = \phi_1 \gamma_{j-1} + \ldots + \phi_p \gamma_{j-p}
\,\,\,\,\, \text{ for } j = q+1, \ldots
\end{align*}\]
- These values will not be the same as the \(\smash{AR(p)}\) values for \(\smash{j = q+1, \ldots}\), since the initial \(\smash{\gamma_0, \ldots, \gamma_q}\) will differ.
- The first \(\smash{q}\) autocovariances, \(\smash{\gamma_0, \ldots, \gamma_q}\), of an \(\smash{ARMA(p,q)}\) will be more complicated than those of an \(\smash{AR(p)}\).
Redundancy of \(\smash{ARMA(p,q)}\)¶
Factoring the polynomials \(\smash{\phi(L)}\) and \(\smash{\theta(L)}\), an \(\smash{ARMA(p,q)}\) can be written as
\[\begin{align*}
(1-\lambda_1 L) \cdots (1-\lambda_p L) (Y_t - \mu) & = (1 -
\eta_1 L) \cdots (1 - \eta_q L) \varepsilon_t.
\end{align*}\]
- If two of the roots are identical, \(\smash{\lambda_i = \eta_j}\), both polynomials can be divided by \(\smash{(1-\lambda_i L)}\).
- The result would be an \(\smash{ARMA(p-1, q-1)}\):
\[\begin{align*}
(1-\phi_1^* L - \ldots - \phi_{p-1}^* L^{p-1}) (Y_t - \mu) & = (1 +
\theta_1^* L + \ldots + \theta_{q-1}^* L^{q-1}) \varepsilon_t.
\end{align*}\]