============================================================================== Generalized Method of Moments ============================================================================== Setup ============================================================================== Let :math:`\smash{\boldsymbol{Y}_t}` be an :math:`\smash{(n \times 1)}` vector of random variables and :math:`\smash{\boldsymbol{\theta}}` a :math:`\smash{(k \times 1)}` vector of parameters governing the process :math:`\smash{\{\boldsymbol{Y}_{t}\}}`. .. raw:: - Denote the true parameter vector as :math:`\smash{\boldsymbol{\theta}_{0}}`. Moment Conditions ============================================================================== Suppose we can specify an :math:`\smash{(r \times 1)}` vector valued function :math:`\smash{\boldsymbol{h}(\boldsymbol{\theta},\boldsymbol{Y}_{t}): (\mathbb{R}^{k} \times \mathbb{R}^{n}) \rightarrow \mathbb{R}^{r}}` such that: .. math:: \smash{E[\boldsymbol{h}(\boldsymbol{\theta}_{0},\boldsymbol{Y}_{t})] = 0, \,\,\, \text{where} \,\,\, r \ge k}. .. raw:: Define :math:`\smash{\boldsymbol{\mathcal{Y}}_t = (\boldsymbol{y}_1, \ldots, \boldsymbol{y}_t)}` and .. math:: \smash{\boldsymbol{g}_{T}(\boldsymbol{\theta}| \boldsymbol{\mathcal{Y}}_T) = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{h}(\boldsymbol{\theta},\boldsymbol{y}_{t})}. .. raw:: Note that :math:`\smash{\boldsymbol{g}_{T}(\boldsymbol{\theta}| \boldsymbol{\mathcal{Y}}_T): \mathbb{R}^{k} \rightarrow \mathbb{R}^{r}}`. GMM Estimator ============================================================================== We want to choose :math:`\smash{\hat{\boldsymbol{\theta}}_{gmm}}` such that the sample moments :math:`\smash{\boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}}_{gmm}| \boldsymbol{\mathcal{Y}}_T)}` are close to zero. .. raw:: - If :math:`\smash{r = k}`, we can choose :math:`\smash{\hat{\boldsymbol{\theta}}_{gmm}}` such that :math:`\smash{\boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}}_{gmm}| \boldsymbol{\mathcal{Y}}_T) = 0}` because we have :math:`\smash{k}` equations and :math:`\smash{k}` unknowns. .. raw:: - If :math:`\smash{r > k}` we have more equations than unknowns; in general there is no :math:`\smash{\hat{\boldsymbol{\theta}}_{gmm}}` such that :math:`\smash{\boldsymbol{g}_{T}(\hat{\boldsymbol{\theta}}_{gmm}| \boldsymbol{\mathcal{Y}}_T) = 0}`. GMM Estimator ============================================================================== If :math:`\smash{r > k}`, we minimize a quadratic form: .. math:: \smash{\underset{1 \times 1}{\underbrace{Q_{T}(\boldsymbol{\theta}|\boldsymbol{\mathcal{Y}}_T)}} = \underset{(1 \times r)}{\underbrace{\boldsymbol{g}_{T}(\boldsymbol{\theta}| \boldsymbol{\mathcal{Y}}_T)'}}\underset{(r \times r)}{\underbrace{W_{T}}}\underset{(r \times 1)}{\underbrace{\boldsymbol{g}_{T}(\boldsymbol{\theta}|\boldsymbol{\mathcal{Y}}_T)}}}. .. raw:: - The matrix :math:`\smash{W_{T}}` places more weight on some moment conditions and less on others. .. raw:: - We might have to use numerical optimization to minimze :math:`\smash{Q_{T}(\boldsymbol{\theta}|\boldsymbol{\mathcal{Y}}_T)}`. Example: t-distribution ============================================================================== The method of moments estimator of the t-distribution is a special case of the GMM estimator. .. raw:: - :math:`\smash{\boldsymbol{Y}_{t}} = Y_t`. .. raw:: - :math:`\smash{\boldsymbol{\theta} = \nu}` .. raw:: - :math:`\smash{W_{T} = 1}` .. raw:: - :math:`\smash{\boldsymbol{h}(\boldsymbol{\theta},\boldsymbol{Y}_{t}) = Y_{t}^{2} - \frac{\nu}{\nu - 2}}`. .. raw:: Note that .. math:: \smash{E[Y_{t}^{2}] = \frac{\nu}{\nu-2}}. Example: t-distribution ============================================================================== .. math:: \begin{align} E[\boldsymbol{h}(\boldsymbol{\theta},\boldsymbol{Y}_{t})] & = E\left[Y_{t}^{2} - \frac{\nu}{\nu-2}\right] = 0 \\ \boldsymbol{g}_{T}(\boldsymbol{\theta}|\boldsymbol{\mathcal{Y}}_T) & = \frac{1}{T} \sum_{t=1}^{T} \left(y_{t}^{2} - \frac{\nu}{\nu - 2}\right). \end{align} .. raw:: In this case, :math:`\smash{r = k = 1}`, and .. math:: \smash{Q_{T}(\boldsymbol{\theta}|\boldsymbol{\mathcal{Y}}_T) = \left[ \frac{1}{T} \sum_{t=1}^{T} \left(y_{t}^{2} - \frac{\nu}{\nu - 2}\right)\right]^{2}}. .. raw:: Since :math:`\smash{r = k = 1}`, :math:`\smash{\hat{\nu}_{gmm}}` can be chosen such that :math:`\smash{Q_{T}(\boldsymbol{\theta}|\boldsymbol{\mathcal{Y}}_T) = 0}`. Example: t-distribution with :math:`\smash{r = 2}` ============================================================================== Suppose we add a moment condition for the t-distribution. .. raw:: - If :math:`\smash{\nu > 4}`, then .. math:: \smash{\mu_{4} = E[Y_{t}^{4}] = \frac{3\nu^{2}}{(\nu-2)(\nu-4)}}. .. raw:: - In this case, :math:`\smash{ r = 2 > 1 = k}`. .. raw:: - We now have more moment conditions than parameters. Example: t-distribution with :math:`\smash{r = 2}` ============================================================================== We map this problem into GMM form in the following way: - :math:`\smash{\boldsymbol{Y}_{t} = Y_t}` - :math:`\smash{\boldsymbol{\theta} = \nu}` .. math:: \begin{align} W_{T} & = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ \end{array} \right] \\ \boldsymbol{h}(\boldsymbol{\theta},\boldsymbol{Y}_{t}) & = \left[\begin{array}{c} Y_{t}^{2} - \frac{\nu}{\nu - 2} \\ Y_{t}^{4} - \frac{3\nu^{2}}{(\nu-2)(\nu-4)} \\ \end{array} \right] \\ \boldsymbol{g}_{T}(\boldsymbol{\theta} | \boldsymbol{\mathcal{Y}}_T) & = \frac{1}{T} \sum_{t=1}^{T} h(\boldsymbol{\theta},\boldsymbol{y}_{t}). \end{align} Example: t-distribution with :math:`\smash{r = 2}` ============================================================================== The weighting matrix :math:`\smash{W_{T} = I_2}` places equal weight on the two moment conditions. .. raw:: - We could alter this matrix to emphasize one condition more than another. GMM Consistency ============================================================================== If :math:`\smash{\boldsymbol{Y}_{t}}` is strictly stationary and :math:`\smash{\boldsymbol{h}}` continuous, a law of large numbers will hold: .. math:: \smash{\boldsymbol{g}_{T}(\boldsymbol{\theta}) \overset{p}{\rightarrow} E[\boldsymbol{h}(\boldsymbol{\theta},\boldsymbol{Y}_{t})]}. .. raw:: Under certain regularity conditions, it can be shown that .. math:: \smash{\boldsymbol{\theta}_{gmm} \overset{p}{\rightarrow} \boldsymbol{\theta}_{0}}.