============================================================================== Causality and Invertibility ============================================================================== Causality ============================================================================== Suppose :math:`\smash{\{Y_t\}}` is an :math:`\smash{AR(1)}` process: .. math:: \begin{align*} Y_t & = \phi Y_{t-1} + \varepsilon_t. \end{align*} .. raw:: - We have shown that when :math:`\smash{|\phi| < 1}`, :math:`\smash{\{Y_t\}}` is stationary. .. raw:: - What if :math:`\smash{|\phi| > 1}`? Causality ============================================================================== Let's run the :math:`\smash{AR}` recursion forward: .. raw:: .. math:: \begin{align*} Y_{t-1} & = \frac{1}{\phi} Y_t - \frac{1}{\phi} \varepsilon_t = \frac{1}{\phi} \left(\frac{1}{\phi} Y_{t+1} - \frac{1}{\phi} \varepsilon_{t+1}\right) - \frac{1}{\phi} \varepsilon_t \\ & = - \frac{1}{\phi} \varepsilon_t - \left(\frac{1}{\phi}\right)^2 \varepsilon_{t+1} + \left(\frac{1}{\phi}\right)^2 Y_{t+1} \\ & \vdots \\ & = - \sum_{j=0}^{\infty} \left(\frac{1}{\phi}\right)^{j+1} \varepsilon_{t+j} \\ & = - \left(\sum_{j=0}^{\infty} \left(\frac{1}{\phi}\right)^{j+1} L^{-j}\right) \varepsilon_t. \end{align*} Causality ============================================================================== The previous sum converges, so :math:`\smash{Y_t}` is stationary. .. raw:: - However it is not a function of past :math:`\smash{\varepsilon_t}`. Causality ============================================================================== A process :math:`\smash{\{X_t\}}` is a causal function of :math:`\smash{\{W_t\}}` if :math:`\smash{\exists \psi(L) = \psi_0 + \psi_1L^1 + \ldots}` such that :math:`\smash{x_t = \psi(L) w_t}` and :math:`\smash{\sum_{j=0}^{\infty} |\psi_j| < \infty}`. .. raw:: - An :math:`\smash{AR(1)}` is causal only if :math:`\smash{|\phi| < 1}`. .. raw:: - However it is stationary as long as :math:`\smash{|\phi| \neq 1}`. Causality of :math:`\smash{AR(p)}` ============================================================================== Suppose :math:`\smash{\{Y_t\}}` is an :math:`\smash{AR(p)}` process with lag polynomial :math:`\smash{\phi(L)}`. .. raw:: - If all roots of :math:`\smash{\phi(L)}` are inside or outside the unit circle, :math:`\smash{\{Y_t\}}` is stationary. .. raw:: - If any root of :math:`\smash{\phi(L)}` is on the unit circle, :math:`\smash{\{Y_t\}}` is not stationary. .. raw:: - If all roots of :math:`\smash{\phi(L)}` are outside the unit circle, :math:`\smash{\phi(L)^{-1}}` exists and :math:`\smash{\{Y_t\}}` is stationary and causal. Invertibility ============================================================================== Suppose :math:`\smash{\{Y_t\}}` is an :math:`\smash{MA(q)}` process: .. math:: \smash{Y_t = \mu + \theta(L) \varepsilon_t,} where :math:`\smash{\theta(L) = 1+\theta_1 L^1 + \ldots + \theta_q L^q}`. .. raw:: - We say :math:`\smash{\{Y_t\}}` is *invertible* if :math:`\smash{\theta(L)^{-1}}` exists. Invertibility ============================================================================== The :math:`\smash{MA(q)}` lag polynomial can be factored as .. math:: \smash{\theta(L) = 1+\theta_1 L^1 + \ldots + \theta_q L^q = (1-\eta_1 L)\cdots(1-\eta_q L).} .. raw:: - :math:`\smash{\left\{\frac{1}{\eta_i}\right\}_{i=1}^q}` are the roots of :math:`\smash{\theta(L)}`. .. raw:: Suppose :math:`\smash{|\eta_i| < 1 \,\, \forall i}`. Then .. math:: \begin{align*} (1-\eta_i L)^{-1} & = \sum_{j=0}^{\infty} \eta^j_i L^j \,\,\,\, \forall i \\ \theta(L)^{-1} & = \left(\sum_{j=0}^{\infty} \eta^j_1 L^j\right) \cdots \left(\sum_{j=0}^{\infty} \eta^j_q L^j\right). \end{align*} Stationarity/Invertibility ============================================================================== We previously showed that an :math:`\smash{MA(q)}` is *always* stationary, regardless of the roots of :math:`\smash{\theta(L)}`. .. raw:: - It is only invertible if all of the roots of :math:`\smash{\theta(L)}` lie outside the unit circle. .. raw:: - In this case .. math:: \smash{\varepsilon_t = \theta(L)^{-1} Y_t}. .. raw:: - That is, :math:`\smash{\{\varepsilon_t\}}` is a causal function of :math:`\smash{\{Y_t\}}`. Inverting an :math:`\smash{MA(q)}` ============================================================================== Given an :math:`\smash{MA(q)}` process, .. math:: \smash{Y_t = \mu + \theta(L) \varepsilon_t, \,\,\,\, \varepsilon_t \stackrel{i.i.d.}{\sim} WN(0,\sigma^2)}, suppose, without loss of generality, - :math:`\smash{|\eta_i| < 1}` for :math:`\smash{i=1,\ldots,m}` - :math:`\smash{|\eta_i| > 1}` for :math:`\smash{i=m+1,\ldots,q}`. Inverting an :math:`\smash{MA(q)}` ============================================================================== Create a new process .. math:: \smash{\widetilde{Y}_t = \mu + \tilde{\theta}(L) \tilde{\varepsilon}_t, \,\,\,\, \tilde{\varepsilon}_t \stackrel{i.i.d.}{\sim} WN(0,\sigma^2 \eta^2_{m+1} \cdots \eta^2_q),} where .. math:: \begin{align*} \tilde{\theta}(L) & = 1+\tilde{\theta}_1 L^1 + \ldots + \tilde{\theta}_q L^q \\ & = \left(1-\eta_1 L\right) \cdots \left(1-\eta_mL\right) \cdot \left(1-\frac{1}{\eta_{m+1}}L\right) \cdots \left(1 - \frac{1}{\eta_q}L\right). \end{align*} Inverting an :math:`\smash{MA(q)}` ============================================================================== It can be shown that :math:`\smash{\widetilde{Y}_t}` has the same first and second moments as :math:`\smash{Y_t}`. .. raw:: - :math:`\smash{\widetilde{Y}_t}` is known as the invertible represenation of the :math:`\smash{MA(q)}` process. .. raw:: - Note that every :math:`\smash{MA(q)}` process has an invertible representation so long as none of the roots of :math:`\smash{\theta(L)}` lie on the unit circle. .. raw:: - If an invertible representation exists, it is unique. Causality and Invertibility of an :math:`\smash{ARMA(p,q)}` ============================================================================== The notions of stationarity, causality and invertibility extend to an :math:`\smash{ARMA(p,q)}` process: .. math:: \begin{align} \phi(L) Y_t & = c + \theta(L) \varepsilon_t. \end{align} .. raw:: - If none of the roots of :math:`\smash{\phi(L)}` lie on the unit circle, :math:`\smash{\{Y_t\}}` is stationary. .. raw:: - If all of the roots of :math:`\smash{\phi(L)}` lie outside the unit circle, :math:`\smash{\{Y_t\}}` is causal. .. raw:: - If none of the roots of :math:`\smash{\theta(L)}` lie on the unit circle, :math:`\smash{\{Y_t\}}` has a unique invertible representation.