Question 1
Download the file guessTheModel1.txt
from the course website and import the data into R
.
a. (20 points)
What time series model best describes the data? Justify your answer both visually and with parameter estimates.
Solution:
b. (20 points)
What do you notice about the standard errors for the parameters of the model you estimated in part (a)? Estimate a new model that only includes terms that were significant in part (a). How does this model differ from what you previously selected?
Solution:
c. (15 points)
Repeat part (a) for only the first 100 observations and the first 1000 observations of the dataset.
Solution:
Question 2
Suppose that
\(Y_1,Y_2,\ldots\) and
\(W_1,W_2,\ldots\) are
\(AR(1)\) and
\(MA(1)\) processes, respectively, such that
\[\begin{align*}
Y_t & = c+\phi Y_{t-1} + \varepsilon_t \\
W_t & = \mu +\varepsilon_t + \theta \varepsilon_{t-1},
\end{align*}\]
where \(\varepsilon_t \stackrel{i.i.d.}{\sim} N(0, \sigma_e^2)\).
a. (15 points)
Solve for \(\text{Cov}( Y_t,W_t)\).
Solution:
b. (15 points)
Solve for \(\text{Cov}( Y_t,W_{t-1})\).
Solution:
c. (15 points)
Solve for \(\text{Var}( Y_t+W_{t})\).
Solution:
LS0tCnRpdGxlOiAiUHJvYmxlbSBTZXQgNCIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICBwczE6IGRlZmF1bHQKLS0tCgojIFF1ZXN0aW9uIDEKRG93bmxvYWQgdGhlIGZpbGUgYGd1ZXNzVGhlTW9kZWwxLnR4dGAgZnJvbSB0aGUgY291cnNlIHdlYnNpdGUgYW5kIGltcG9ydCB0aGUgZGF0YSBpbnRvIGBSYC4KCiMjIyBhLiAoMjAgcG9pbnRzKQpXaGF0IHRpbWUgc2VyaWVzIG1vZGVsIGJlc3QgZGVzY3JpYmVzIHRoZSBkYXRhPyBKdXN0aWZ5IHlvdXIgYW5zd2VyIGJvdGggdmlzdWFsbHkgYW5kIHdpdGggcGFyYW1ldGVyIGVzdGltYXRlcy4KCiMjIyMgU29sdXRpb246CgojIyMgYi4gKDIwIHBvaW50cykKV2hhdCBkbyB5b3Ugbm90aWNlIGFib3V0IHRoZSBzdGFuZGFyZCBlcnJvcnMgZm9yIHRoZSBwYXJhbWV0ZXJzIG9mIHRoZSBtb2RlbCB5b3UgZXN0aW1hdGVkIGluIHBhcnQgKGEpPyBFc3RpbWF0ZSBhIG5ldyBtb2RlbCB0aGF0IG9ubHkgaW5jbHVkZXMgdGVybXMgdGhhdCB3ZXJlIHNpZ25pZmljYW50IGluIHBhcnQgKGEpLiBIb3cgZG9lcyB0aGlzIG1vZGVsIGRpZmZlciBmcm9tIHdoYXQgeW91IHByZXZpb3VzbHkgc2VsZWN0ZWQ/CgojIyMjIFNvbHV0aW9uOgoKIyMjIGMuICgxNSBwb2ludHMpClJlcGVhdCBwYXJ0IChhKSBmb3Igb25seSB0aGUgZmlyc3QgMTAwIG9ic2VydmF0aW9ucyBhbmQgdGhlIGZpcnN0IDEwMDAgb2JzZXJ2YXRpb25zIG9mIHRoZSBkYXRhc2V0LgoKIyMjIyBTb2x1dGlvbjoKCiMgUXVlc3Rpb24gMgpTdXBwb3NlIHRoYXQgJFlfMSxZXzIsXGxkb3RzJCBhbmQgJFdfMSxXXzIsXGxkb3RzJCBhcmUgJEFSKDEpJCBhbmQgJE1BKDEpJCBwcm9jZXNzZXMsIHJlc3BlY3RpdmVseSwgc3VjaCB0aGF0ClxiZWdpbnthbGlnbip9CiAgWV90ICYgPSBjK1xwaGkgWV97dC0xfSArIFx2YXJlcHNpbG9uX3QgXFwKICBXX3QgJiA9IFxtdSArXHZhcmVwc2lsb25fdCArIFx0aGV0YSBcdmFyZXBzaWxvbl97dC0xfSwKXGVuZHthbGlnbip9CndoZXJlICRcdmFyZXBzaWxvbl90IFxzdGFja3JlbHtpLmkuZC59e1xzaW19IE4oMCwgXHNpZ21hX2VeMikkLgoKIyMjIGEuICgxNSBwb2ludHMpClNvbHZlIGZvciAkXHRleHR7Q292fSggWV90LFdfdCkkLgoKIyMjIyBTb2x1dGlvbjoKCiMjIyBiLiAoMTUgcG9pbnRzKQpTb2x2ZSBmb3IgJFx0ZXh0e0Nvdn0oIFlfdCxXX3t0LTF9KSQuCgojIyMjIFNvbHV0aW9uOgoKIyMjIGMuICgxNSBwb2ludHMpClNvbHZlIGZvciAgJFx0ZXh0e1Zhcn0oIFlfdCtXX3t0fSkkLgoKIyMjIyBTb2x1dGlvbjoK