Question 1
Suppose that
\(X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} \text{Poisson}(\lambda)\). That is
\[\begin{align*}
p_X(x) & = \frac{\lambda^x e^{-\lambda}}{x!},
\end{align*}\]
for \(x \in \{0,1,2,\ldots\}\).
a. (10 points)
What is the Fisher information and observed Fisher information?
Solution:
b. (10 points)
For the remainder of the problem, let \(\lambda=4\). Simulate \(n=100,000\) observations from this distribution. Find the asymptotic 95% confidence interval for \(\lambda\).
Solution:
c. (10 points)
Draw \(B=1000\) bootstrap samples from your simulated data. What is the bootstrap standard deviation of \(\hat{\lambda}\)?
Solution:
d. (10 points)
Find a 95% confidence interval using the bootstrapped standard deviation.
Solution:
e. (10 points)
Find a 95% confidence interval using the bootstrapped empirical quantile method.
Solution:
f. (10 points)
Discuss the differences between the two bootstraps and the asymptotic confidence intervals.
Solution:
Question 2
a. (30 points)
Now drop all but the first 50 observations of your simulated data from question 1. Repeat parts (b) - (e).
Solution:
b. (10 points)
Discuss the differences with only 50 observations between the bootstrap and asymptotic intervals. What do you notice with a smaller sample size?
Solution:
LS0tCnRpdGxlOiAiUHJvYmxlbSBTZXQgMyIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICBwczE6IGRlZmF1bHQKLS0tCgojIFF1ZXN0aW9uIDEKU3VwcG9zZSB0aGF0ICRYXzEsIFxsZG90cywgWF9uIFxzdGFja3JlbHtpLmkuZC59e1xzaW19IFx0ZXh0e1BvaXNzb259KFxsYW1iZGEpJC4gVGhhdCBpcwpcYmVnaW57YWxpZ24qfQogIHBfWCh4KSAmID0gXGZyYWN7XGxhbWJkYV54IGVeey1cbGFtYmRhfX17eCF9LApcZW5ke2FsaWduKn0KZm9yICR4IFxpbiBcezAsMSwyLFxsZG90c1x9JC4KCiMjIyBhLiAoMTAgcG9pbnRzKQpXaGF0IGlzIHRoZSBGaXNoZXIgaW5mb3JtYXRpb24gYW5kIG9ic2VydmVkIEZpc2hlciBpbmZvcm1hdGlvbj8KCiMjIyMgU29sdXRpb246CgojIyMgYi4gKDEwIHBvaW50cykKRm9yIHRoZSByZW1haW5kZXIgb2YgdGhlIHByb2JsZW0sIGxldCAkXGxhbWJkYT00JC4gU2ltdWxhdGUgJG49MTAwLDAwMCQgb2JzZXJ2YXRpb25zIGZyb20gdGhpcyBkaXN0cmlidXRpb24uIEZpbmQgdGhlIGFzeW1wdG90aWMgOTVcJSBjb25maWRlbmNlIGludGVydmFsIGZvciAkXGxhbWJkYSQuCgojIyMjIFNvbHV0aW9uOgoKIyMjIGMuICgxMCBwb2ludHMpCkRyYXcgJEI9MTAwMCQgYm9vdHN0cmFwIHNhbXBsZXMgZnJvbSB5b3VyIHNpbXVsYXRlZCBkYXRhLiBXaGF0IGlzIHRoZSBib290c3RyYXAgc3RhbmRhcmQgZGV2aWF0aW9uIG9mICRcaGF0e1xsYW1iZGF9JD8KCiMjIyMgU29sdXRpb246CgojIyMgZC4gKDEwIHBvaW50cykKRmluZCBhIDk1XCUgY29uZmlkZW5jZSBpbnRlcnZhbCB1c2luZyB0aGUgYm9vdHN0cmFwcGVkIHN0YW5kYXJkIGRldmlhdGlvbi4KCiMjIyMgU29sdXRpb246CgojIyMgZS4gKDEwIHBvaW50cykKRmluZCBhIDk1XCUgY29uZmlkZW5jZSBpbnRlcnZhbCB1c2luZyB0aGUgYm9vdHN0cmFwcGVkIGVtcGlyaWNhbCBxdWFudGlsZSBtZXRob2QuCgojIyMjIFNvbHV0aW9uOgoKIyMjIGYuICgxMCBwb2ludHMpCkRpc2N1c3MgdGhlIGRpZmZlcmVuY2VzIGJldHdlZW4gdGhlIHR3byBib290c3RyYXBzIGFuZCB0aGUgYXN5bXB0b3RpYyBjb25maWRlbmNlIGludGVydmFscy4KCiMjIyMgU29sdXRpb246CgojIFF1ZXN0aW9uIDIKCiMjIyBhLiAoMzAgcG9pbnRzKQpOb3cgZHJvcCBhbGwgYnV0IHRoZSBmaXJzdCA1MCBvYnNlcnZhdGlvbnMgb2YgeW91ciBzaW11bGF0ZWQgZGF0YSBmcm9tIHF1ZXN0aW9uIDEuICBSZXBlYXQgcGFydHMgKGIpIC0gKGUpLgoKIyMjIyBTb2x1dGlvbjoKCiMjIyBiLiAoMTAgcG9pbnRzKQpEaXNjdXNzIHRoZSBkaWZmZXJlbmNlcyB3aXRoIG9ubHkgNTAgb2JzZXJ2YXRpb25zIGJldHdlZW4gdGhlIGJvb3RzdHJhcCBhbmQgYXN5bXB0b3RpYyBpbnRlcnZhbHMuICBXaGF0IGRvIHlvdSBub3RpY2Ugd2l0aCBhIHNtYWxsZXIgc2FtcGxlIHNpemU/CgojIyMjIFNvbHV0aW9uOgo=