Question 1
Obtain daily returns data for Medical Marijuana Inc. (MJNA) between 2 Feb 2016 and 1 Feb 2017.
a. (5 points)
Compute the sample skewness of the data.
Solution:
b. (5 points)
Compute the sample kurtosis of the data.
Solution:
c. (10 points)
Create a normal probability plot of the data, including a line that depicts the normal quantiles. Do your estimates of skewness and kurtosis corroborate what you see in the QQ-plot? If so, how?
Solution:
Question 2
a. (15 points)
Simulate \(N = 100\) data observations from a distribution that is 87% \(\mathcal{N}(0, 1)\), 10% \(\mathcal{N}(0, 7.2)\) and 3% \(\mathcal{N}(0, 11)\)? What is the sample kurtosis of your data?
Solution:
b. (10 points)
Repeat part (a) for \(N = 1000\), \(N = 10,000\) and \(N = 100,000\). What is the sample kurtosis of each of your simulated datasets?
Solution:
c. (5 points)
Compute the true kurtosis of the distribution in part (a). How does this compare to the values computed in parts (a) and (b)?
Solution:
Question 3
(40 points)
Suppose that
\(X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} Poisson(\lambda)\). That is
\[\begin{align}
p_X(x) & = \frac{\lambda^x e^{-\lambda}}{x!},
\end{align}\]
for \(x \in \{0,1,2,\ldots\}\). Compute the MLE of \(\lambda\).
Solution:
LS0tCnRpdGxlOiAiUHJvYmxlbSBTZXQgMiIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICBwczE6IGRlZmF1bHQKLS0tCgojIFF1ZXN0aW9uIDEKT2J0YWluIGRhaWx5IHJldHVybnMgZGF0YSBmb3IgTWVkaWNhbCBNYXJpanVhbmEgSW5jLiAoTUpOQSkgYmV0d2VlbiAyIEZlYiAyMDE2IGFuZCAxIEZlYiAyMDE3LgoKIyMjIGEuICg1IHBvaW50cykKQ29tcHV0ZSB0aGUgc2FtcGxlIHNrZXduZXNzIG9mIHRoZSBkYXRhLgoKIyMjIyBTb2x1dGlvbjoKCiMjIyBiLiAoNSBwb2ludHMpCkNvbXB1dGUgdGhlIHNhbXBsZSBrdXJ0b3NpcyBvZiB0aGUgZGF0YS4KCiMjIyMgU29sdXRpb246CgojIyMgYy4gKDEwIHBvaW50cykKQ3JlYXRlIGEgbm9ybWFsIHByb2JhYmlsaXR5IHBsb3Qgb2YgdGhlIGRhdGEsIGluY2x1ZGluZyBhIGxpbmUgdGhhdCBkZXBpY3RzIHRoZSBub3JtYWwgcXVhbnRpbGVzLiBEbyB5b3VyIGVzdGltYXRlcyBvZiBza2V3bmVzcyBhbmQga3VydG9zaXMgY29ycm9ib3JhdGUgd2hhdCB5b3Ugc2VlIGluIHRoZSBRUS1wbG90PyBJZiBzbywgaG93PwoKIyMjIyBTb2x1dGlvbjoKCiMgUXVlc3Rpb24gMgoKIyMjIGEuICgxNSBwb2ludHMpClNpbXVsYXRlICROID0gMTAwJCBkYXRhIG9ic2VydmF0aW9ucyBmcm9tIGEgZGlzdHJpYnV0aW9uIHRoYXQgaXMgODclICRcbWF0aGNhbHtOfSgwLCAxKSQsIDEwJSAkXG1hdGhjYWx7Tn0oMCwgNy4yKSQgYW5kIDMlICRcbWF0aGNhbHtOfSgwLCAxMSkkPyBXaGF0IGlzIHRoZSBzYW1wbGUga3VydG9zaXMgb2YgeW91ciBkYXRhPwoKIyMjIyBTb2x1dGlvbjoKCiMjIyBiLiAoMTAgcG9pbnRzKQpSZXBlYXQgcGFydCAoYSkgZm9yICROID0gMTAwMCQsICROID0gMTAsMDAwJCBhbmQgJE4gPSAxMDAsMDAwJC4gV2hhdCBpcyB0aGUgc2FtcGxlIGt1cnRvc2lzIG9mIGVhY2ggb2YgeW91ciBzaW11bGF0ZWQgZGF0YXNldHM/CgojIyMjIFNvbHV0aW9uOgoKIyMjIGMuICg1IHBvaW50cykKQ29tcHV0ZSB0aGUgdHJ1ZSBrdXJ0b3NpcyBvZiB0aGUgZGlzdHJpYnV0aW9uIGluIHBhcnQgKGEpLiBIb3cgZG9lcyB0aGlzIGNvbXBhcmUgdG8gdGhlIHZhbHVlcyBjb21wdXRlZCBpbiBwYXJ0cyAoYSkgYW5kIChiKT8KCiMjIyMgU29sdXRpb246CgojIFF1ZXN0aW9uIDMKCiMjIyAoNDAgcG9pbnRzKQpTdXBwb3NlIHRoYXQgJFhfMSwgXGxkb3RzLCBYX24gXHN0YWNrcmVse2kuaS5kLn17XHNpbX0gUG9pc3NvbihcbGFtYmRhKSQuIFRoYXQgaXMKXGJlZ2lue2FsaWdufQogIHBfWCh4KSAmID0gXGZyYWN7XGxhbWJkYV54IGVeey1cbGFtYmRhfX17eCF9LApcZW5ke2FsaWdufQpmb3IgJHggXGluIFx7MCwxLDIsXGxkb3RzXH0kLiBDb21wdXRlIHRoZSBNTEUgb2YgJFxsYW1iZGEkLgoKIyMjIyBTb2x1dGlvbjo=